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Abstract 

It is shown that the symplectic potentials which underlie the symplectic geometry of classical 
particles and the multisymplectic geometry of classical fields are obtained as projections of a 
generalized symplectic potential defined on appropriate bundles of frames on a certain manifold. In 
this sense generalized symplectic geometry is a covering theory for Hamiltonian theories of both 
particles and fields. 
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1. Introduction 

In this paper, we report on recent work in the development of a new geometrical theory 
that captures the essence of Hamiltonian methods for both particles and fields. The new 
geometry, n-symplectic geometry, is a generalization of standard symplectic geometry on 
the cotangent bundle of an n-dimensional manifold. In n-symplectic geometry, linear frame 
bundles behave as generalized phase spaces. Our goal is to demonstrate that n-symplectic 
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geometry is a covering theory for standard Hamiltonian theories in the sense that the sym- 
plectic structures of standard theories are derived from the generalized symplectic structures 
of n-symplectic geometry. Moreover, we will show that the algebraic structure of observ- 
ables in n-symplectic geometry is rich enough to resolve some outstanding difficulties in 
the multisymplectic geometry for classical fields. 

2. n-symplectic geometry on the linear frame bundle 

In this section, we summarize Norris’s theory of n-symplectic geometry on the linear 
frame bundle [l I]. Let M be an n-dimensional manifold and let r : LM -+ M be the 
bundle of linear frames of M. That is. 

LM := {(x, ei) 1 x E M, (ei) is a frame of T,M). 

The structure group of LM is the general linear group GL(n, [w), which acts freely on the 
right of LM. The frame bundle L M supports a globally defined FP-valued one-form, the 
soldering one-form 8, defined by [S] 

Q(Y) := u-‘(t,Y) VY E T,LM, 

where u = (x, ei) : R” + T,(,)M is the linear isomorphism [‘ri I-+ c’ei. Here and in the 
following, (ri), i = 1, 2, . . . , n, denotes the standard basis of UP. When convenient we will 
express 8 as 6”ri where each of the n one-forms 0’ is real valued. Compare this P-valued 
soldering one-form to the real-valued canonical one-form 0 on the cotangent bundle T* M. 

Consider now the exact P-valued two-form de. It is straightforward to show that de is 
nondegenerate in the sense that 

XJd6=O+X=Oo, (1) 

where _l indicates the inner product [l] of a form with a vector field. Thus d0 has the basic 
properties of a symplectic structure, although it is IW”-valued. This motivates the following 
definition. 

Definition 1. Let P be a principal fiber bundle over a manifold M with group G. Let the 
dimension of M be n. An n-symplectic structure on P is an [W”-valued two-form w on P 

that is closed and nondegenerate in the sense of Eq. (1). The pair (P, w) is an n-symplectic 

manifold. 

The theory of n-symplectic geometry [l l] on (LM, de) is based on the generalized 
structure equation 

df^‘ji2...ip = _p!x>i2.‘.ip-’ _I &ip, 
(2) 

where the functions f^’ ‘ri2...ip are the components of a @4FP-valued function f^, and the 

vector fields Xy’z”“p-’ are the components of a @~-lRn-valued vector field X/. Recall 
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that the soldering one-form 8 transforms tensorially under right translations R, according 
to Rio = gpl .O for each g E GL(n, IF!). A consequence of this tensorial nature of 6’ is that 

not every @PLY-valued function f^ is compatible with the structure equation (Eq. (2)), and 
hence n-symplectic geometry selects classes of allowable observables. This is in contrast 
with the fact that all smooth real-valued functions on T* M are allowable observables. 

The allowable observables in n-symplectic geometry divide naturally into the symmet- 
ric and antisymmetric Hamiltonian functions, which we denote by SH F and AH F. re- 
spectively. The space SHF is the direct sum $p=,SHF” where SHF” is the space of 
(@s)PR”-valued functions defined on L M that are compatible with a symmetrized version 
of (2), and @& denotes the symmetric tensor product. The elements of SH Ff’ are, in local 
canonical coordinates on LM, pth degree polynomials in the generalized momentum coor- 
dinates on L M, with coefficients that are constant on the fibers of L M. In particular, those 
elements of SH FP whose local coordinate representatives are homogeneous polynomials 
are in oneane correspondence with symmetric rank p contravariant tensor fields on the 
base manifold M. Since those are precisely the elements of S H FP which are tensorial we 
denote this subset by ST” (for Symmetric and Tensorial) and set ST = @F=, ST”. We 

note in particular that elements of ST’ are in one-one correspondence with vector fields 
on M. 

For the symmetric algebra ST, Eq. (2) is replaced by 

d~f^'li2...i, = _p!x~ii2~..ip-1 J doi,,)+ (3) 

where the parenthesis on indices denote symmetrization over the enclosed indices. For each 

,f E ST” this equation determines an equivalence class of “6”r2 
( > 

vector fields for p ? 2 

because the symmetrization on indices in (3) introduces a certain degeneracy which is not 
present for p = 1. More precisely, for each f^ E ST” and each x E L M there exists a local 

section Xi = X ;..““-’ (Ti, Bs . . . 6& rip_,) of the vector bundle T(LM) @I (@s)pp’W + 

L M defined on an open subset U., of L M such that the vector fields X;““‘-’ satisfy (3) for 

all(i~,iz,..., ip). In fact there exists more than one such local section since 

K, = ( Yy 1 $+ J d#p) = 0 for all (it, iz, . , i,)) 

is a nontrivial subspace of T,(L M) 63 (&)P-’ [w” for each y E LM. Indeed, K = 
UVELM(Kx) is a vector sub-bundle of T(LM) @ (c&)“-‘W and for each ,f’ E ST” there 

exists a unique global section 0 of [T(L M) @ (&)P-’ WI/K -+ LM such that for each 
x E L M there exists a local section Xf of [T(L M) @I (I&)“- W] + LM having the 
property that X.f satisfies (3) and a(y) = X,i(y) + KY for each y E U.,.. We denote D by 

[Xf]. If we fix i = (il 1 . . . , i,_l) then there is also a sub-bundle K’ of T (LM) such that 
fory E LM 

K:, = (y~,“‘~ip-i 1 yJi”“ipm’ J &j’P) = () for all ip), 

Moreover there is a unique section oi of T(L M)/K’ -+ LM such that for y E L M, 
a’(y) = X>(y) + Kf, for some local section X> of T(LM) + LM which satisfies (3) 
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for all i,. We denote this section oi by [Xj# = I[XjJ’~~.~‘p~~. The fact that one obtains 
equivalence classes of vector fields rather than vector fields for the higher rank observables 
does not interfere with the basic algebraic structures in n-symplectic geometry. For each 
p > 1 the set of equivalence classes of C& P-‘R”-valued vector fields on LM forms an 
infinite-dimensional vector space. Denote by H V(STJ’) the vector space of &-‘R”-valued 
equivalence classes of vector fields determined by elements of STP using Eq. (3). For f^ E 
STP and i E STq define the Poisson bracket ( , ) : STP x ST4 -+ STf’+q-’ by 

(f^, g]iliz...i,+,-l = p!xjili2...ip-t (gipip+l...ip+q-l 1, (4) 

where X ~ili2~~.ip~l is any representative of the equivalence class [X~J’~‘~...‘P~~. The bracket 
f 

so defined is easily shown to be independent of the choice of representatives and has all 
the properties of a Poisson bracket. In fact when the bracket defined here is re-expressed 
on the base manifold M, it gives [ 1 l] the differential concomitant of Schouten [ 131 and 
Nijenhuis [lo] of the symmetric tensor fields corresponding to f^ and g. 

Theorem 1. The space ST of symmetric tensorial functions on L M is a Poisson algebra 
with respect to the Poisson bracket defined in (4). 

One can also show [ 11,121 that there is a naturally defined Lie bracket, defined using 
equivalence class representatives, that is antisymmetric and satisfies 

~ux~n~ uxani = u+g. 
Denote the direct sum of the vector spaces H V(STp) by H V(ST). 

(5) 

Theorem 2. The vector space H V (ST) of vector-valued equivalence classes of Hamilto- 
nian vector fields on L M is a Lie algebra with respect to the naturally defined bracket. 

For later reference we make explicit the formulas for a rank one tensorial observable. 
Such an observable f^ corresponds [S] to a unique vector field f on the base manifold M. 
Let {xi) be a coordinate chart on U c M. In local coordinates (xi, nkJ := ej(a/&)) on 
t-‘(U) c LM, we may express f^i as f^i = fj(x)nj where f = f'(x)(a/ax'), and 
x E M. Eq. (3) now reduces to 

df^’ = -X,+ de’, 

and this equation has a unique solution for Xf, given in local coordinates by 

(6) 

x/ = f'(+$ - $+-&. 
J 

(7) 

This vector field is also known [S] as the natural lif of the vector field f to L M. The reader 
is referred to [ 111 for a discussion of the full Poisson algebra SH F and a discussion of the 
super-Poisson algebra AH F. 
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3. Generalized symplectic geometry on associated tensor bundles 

Consider the vector space (&) R P n * of rank p covariant skew-symmetric tensors over 
R”, for 1 5 p 5 n, where @a denotes the antisymmetric tensor product. With the 
usual GL(n, R)-action on (@,)PR” *, we may form the associated tensor bundle APM 2 
LM XGL(~.[W) (~3~)prW" * and denote the projection map by x,, : A~'M + M. This bundle 
possesses a canonical p-form PO defined by POII,,~l := n; [u. T] where u E LM and 
T E (@#'R"*. 

Let 8 be the canonical soldering one-form on LM. Define the (&)PRn-valued p-form 
r\P6’ by ~‘8 := 1 and 

P 

AP e := c-z ifp > 1. (8) 

where the A operates in both the domain and range of 8. We may relate the canonical 
soldering one-form on L M to the canonical p-form on AJ’ M. Indeed, let ii E T, L M and 
Xi E T[u3q(~PM) satisfy r*ii = np*ii for 1 5 i 5 p. Then 

~pJ~~~J~,J~o,u,Tl=(JipJ~~~Jri,J~~e,,T), (9) 

where the brackets denote the natural inner product of elements of (@a>J’R” and (&)PR” *. 
If we fix T and define the map 

4T :LM + A~M:u H [u,T]. (10) 

then we may write the relationship in (9) as 

@;(pO) = (APO, T). (I 1) 

Observe that 4~ is not surjective since the subset of APM onto which $T maps depends on 
the rank of T. 

If 1 ( p < n then the (p + I)-forms d(ApQ) and d(PO) are both nondegenerate. Thus 
the generalization of a symplectic structure on APM is directly related to the n-symplectic 
structure of L M. We consider n-symplectic geometry on the principal bundle L M to be a 
covering theory in the sense that for any 1 ( p c n we obtain a “quotient” symplectic-type 
theory on an associated bundle whose structure is a (p + I)-form. Of particular interest 
are two specific examples pertaining to the classical mechanics of particles and of fields. 
respectively. 

4. Symplectic geometry on T * M derived from n-symplectic geometry on L M 

For our first example, we review a result previously obtained by Norris [ 121. Let p = I 
and observe that A1 M = T*M, the standard symplectic manifold for classical particle 
mechanics. The identification of T*M with an associated bundle, T*M 2: LM x~.r_(~,~) 
IF*, motivated Norris to establish that the canonical one-form 6 on T*M “has its roots 
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in a more basic structure on LM” [ 12, p.521, namely, the W-valued soldering one-form 
0 on LM. More recently Norris credits [12] Jedrzej Sniatycki for observing the exact 
relationship, the p = 1 case of Eq. (9), between the canonical one-form z9 on T*M and 
the soldering one-form 8 on LM. Thus the fundamental building block t9 for canonical 
symplectic geometry on T* M is induced from the soldering one-form 8 on L M. 

In this example, Norris [ 121 shows that the homogeneous polynomial observables and 
their corresponding Hamiltonian vector fields on T* M are induced from related objects on 
LM. In particular, elements of ST4 induce qth degree homogeneous polynomial observ- 
ables on T*M as follows. Consider T*M as the associated bundle LM XGL(~,~ I%“*. Then 
for f^ E ST4 define fl : T * M + R by 

Y 

J(]u, aI> := (_fb), i(y,....(yj). (12) 

where [u, a] E T*M, u = (x, ei) E LM, and the brackets denote the evaluation of 
f^(u) E (@S)qlR” at q points in W*. The tensorial character of f^ guarantees that this 
definition is independent of choice of representatives of the equivalence class [u, a]. In 
local coordinates, rrj(,, ek)oi = c’(L?/ax’)oi = pj(e’o)) where (pj) are the standard 

momentum coordinates on T*M defined by the local chart (xi) on M. Then, for example, 
for q = 2 take f^ = pjri @ rj where i’j = f ab (x)n6nbJ. The definition in ( 12) yields 

.? = fah(.4PaPl13 (13) 

which is a homogeneous quadratic polynomial observable on T* M. Furthermore, the equiv- 
alence class of Hamiltonian vector fields [Xi1 for f^ E STY may be mapped to the 

Hamiltonian vector field Xi of f on T*M, where f is induced from f^ as in (12). In 
this p = 1 case the map (10) reduces to &(u) = [u, cr] E T*M where (Y is any nonzero 
element of R” *. 

Theorem 3. Let f E ST9, let I[Xfj be the associated equivalence class of Hamiltonian 

vectorjelds determined by (3), let Xf -ili2.&l denote any set of representatives of ([Xf], 

and let f be the degree q homogeneous polynomial observable on T* M determined by f 
as in (12). Then, for a! # 0, 

X = q!~~*(xjili2...iY-I(Yi,(yi2 . . &_,) 

is a well-de$ned vector$eld on T* M with the O-section deleted, and X = X f. 

Hence the canonical symplectic geometry of homogeneous polynomial observables on 
T* M is induced from the n-symplectic geometry on L M. 

5. Multisymplectic geometry on Z derived from (n + k)-symplectic geometry on LV Y 

For our second example, we study the extension of the theory of symplectic geometry 
to a multivariable version describing classical field theories. Early attempts to define a 
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manifold with such a multisymplectic geometry consisted of constructions of linear vector 
bundles [6,7] on the total space of a fiber bundle Y + M, where Y is the field configuration 
space of the field theory. The multi-author monograph GIMMsy [5] and papers by Go- 
tay [ 3,4] discuss an affine version of multisymplectic geometry, in which the “phase space” 
bundle is the bundle of affine cojets J’Y, the vector bundle over Y whose fiber at .y is the 
set of affine maps from JvY to AiCvJ M. This is considered to be the affine density-valued 
dual space to the jet bundle JY over Y. The fiber dimension of J’Y over Y is nk + I. 

The vector bundle of affine cojets J*Y is the best model to date for multisymplectic ge- 
ometry because there exists a canonical form on J* Y, analogous to the canonical symplectic 
potential one-form on T*M. For convenience, we work with another description of J’Y. 
GIMMsy establishes a canonical isomorphism from J’Y to a sub-bundle Z of the bundle 
of n-forms of Y, defined fiberwise over Y by 

where VJ is the subspace of vertical vectors in Ty Y. The canonical multisymplectic n:form 
n8 on Z is defined by nO(z) := X;,(Z). In contrast to the linear multisymplectic theo- 
ries [6,7], “(4 exists independently of additional hypotheses, such as choice of Ehresmann 
connection. 

Now we construct the appropriate principal bundle formulation of the multivariable sym- 
plectic geometry for affine field theories, analogous to the formulation of the frame bundle 
LM for standard symplectic geometry on T*M. Applying Norris’s theory of n-symplectic 
geometry [I 11 to an arbitrary fiber bundle Y over M with fiber dimension k, we produce the 
linear frame bundle L Y over Y as a principal fiber bundle with structure group GL(n + k, [w) 
and (n + k)-symplectic potential 0. Now define the vertically adapted,frame bundle LV Y 
to be the reduced sub-bundle of L Y defined by 

LVY := I(.)‘, [ei, CA)) 1 y E Y, (ej, (A) is a frame of T,Y. (CA] is a frame of v,.) 

The structure group GA of LVY is asemidirect product of G := CL(n) x CL(k) and lRkx”. 
In order to construct the tensor bundle AJ’ Y as a bundle associated to LV Y, define the 

linear left action of GA on the vector space (@&) R P ‘+‘* to be the restriction of the natural 
action of GL(n + k, [w) on (C&,) R P n+k* to the subgroup GA c GL(n + k, [w). The vector 
bundle APY is then identified with LvY xcA (&,)P[Wntk*. 

We shall now restrict ourselves to p = n. Let (rp), p = 1, . , n+k, be the standard basis 
of Rntk and let (rp) be the corresponding dual basis. For convenience, define R,,...,” := 
rLl, A.. .Arpn and R@l”‘fin := r@l A.. .A rl*“. Then the Levi-Civita tensore E (&,)“[W”‘“* 
is represented by E := ??;,...i,, Rii...‘,l where Ci,...i, = sgna and (T is the permutation of n 
elements expressed by (o-(l), . . . , a(n)) = (il,. . , i,). If n = I and (B, h) E Rk x R, 
then define V(B, A) E (&I~)~W+~* by components Vi(f3, h) = h and VA(B, 1) = BA. If 
n > 1 and (B, h) E [Wnxk x IF!, then define V(B, A.) E (@a)nW+k* by components 

Vi, . ..i., (B, A) = (lln!)~~i,...i,, T 

vAil...i,_l (B. A) = (l/n!)B~~ji,...;,,_, 
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and 

VA I... A,i ,... i”-,(B, A) = 0 vl 2 2. 

All other components are defined to be identically zero. The map 

[Wnxk x R -+ (@JVR”+k* : (B, h) H V(B, h) 

is a linear injection. The GA-action on Rnxk x R defined by 

. (B, h) := det(N-‘)(NBK-‘, i - tr(BK-‘A)) 

induces a monomorphism of vector bundles LvY xGA (Rnxk x R) -+ LvY XC* ((8,)” 
Rntk*). So we now have a description of Z as a vector bundle associated to Lv Y. Indeed, 
LvY xc/, ([Wnxk x IR) is a vector bundle over Y with fiber dimension nk+ 1. It has a canonical 
n-form obtained from pulling back the canonical n-form on LvY x GA (@J” Rn+k 2 A” Y. 

Let i : LvY -+ LY be the inclusion map. The (n + k)-symplectic potential on LvY 
is the R”+k-valued one-form i*0. We may establish the relationship between the (n + k)- 
symplectic potential i*8 and the multivariable symplectic potential “0 on Z, which follows 
from the p = n case of Eq. (9). Now observe that the map 

4(&h) : LVY + z : UJ I-+ [w, (B, h)l 

is fiber preserving over Y (see Eq. (10)). If rank B = r, then ~(B,J) has for its range a 
sub-bundle of Z each fiber of which is isomorphic to the set of rank r matrices in lRnxk. 
Then the potentials may be related by a special case of Eq. (11): 

qyE,*p) = (A”i*e, V(B, A)). 

6. Momentum observables on LvY and Z 

Now we shall proceed to develop the relationships between the algebras of observables 
and Hamiltonian vector fields on LvY and the analogous algebras on Z. We shall demon- 
strate that the difficulties with the algebra of observables on Z is not present in the analogous 
algebra on Lv Y. 

Following GIMMsy, let u be a projectable vector field on the total space n : Y + M 
and define a momentum observable [5] based on v to be an (n - I)-form fU on Z given by 
f”(z) := rr;z (u 1 z) . Assign to fU a Hamiltonian vector field Xf, via the multisymplectic 
structure equation, 

df, = -X,” -ld(nO). (15) 

A problem with this geometrical structure is that the naturally defined “Poisson” bracket of 
two momentum observables, 

If”, fw1 := -Xf, JXfw -Id(“@), (16) 
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results in another momentum observable only up to the addition of an exact (n - I)-form. 
More precisely, 

(.fLl. fill1 := fiu.ull + d(Xfi, JXf,,, J “0). (17) 

Although the vector field [u, w] is projectable, the set of momentum observables does not 
form a Lie algebra under the bracket in (16), which is otherwise analogous to the Poisson 
bracket on C’“O(T*M) in the standard theory of symplectic geometry. If we extend to the 
space of momentum observables plus exact (n - I)-forms and quotient by the exact (n - 1). 
forms, we would form a Lie algebra under the obvious extension of the bracket in ( 16). 
However. this Lie algebra is devoid of the observables analogous to the position observables 
in the standard theory. 

We recall (see the end of Section 2) that there is a one-one correspondence between vector 
fields on Y and tensorial [Wn+k -valued functions on L Y. By restriction, there is a one-one 
correspondence between vector fields on Y and GA-tensorial [W”+k-valued functions on 
Lv Y. We define a vector subspace of T’(LvY), the space of GA-tensorial [W”+‘-valued 
functions on LV Y, as follows. Define ,3&Y to be the space of vector fields on Y that 
are smoothly projectable to M, and define T$(LvY) to be the subspace of T’(LvY) that 
corresponds only with Xp,, Y. 

The (n + k)-symplectic structure on LvY is the nondegenerate lFVk-valued two-form 
i* de. The (n + k)-synplectic structure equation for LvY is (cf. Eq. (6)) 

df^ = -X,f Ji* de, (18) 

where Xi is a vector field on LV Y and f^ is a smooth E@‘-valued function on LV Y. As in 
the n-symplectic theory on L M, the structure equation admits neither all vector fields nor 
all [Wn+k-valued functions. 

Proposition 1. The only elements of T’ (Lv Y) that are admissible in the (n +k)-svmplectic 
equation are those in the subspace T$ (Lv Y). Moreover, the subspace Td ( LV Y) forms a 
Lie algebra under the bracket dejined in Eq. (4). 

Recalling that we constructed observables on both bundles LV Y and Z from Xp,, Y, we 
see as an immediate consequence that the vector space of observables T$ ( LV Y) is in one- 
one correspondence with the vector space of momentum observables on Z. In addition, the 
Hamiltonian vector fields on the two bundles may also be related. 

Theorem 4. Let u E XprojY, let fU E Td(LvY) be obtained from v and let Xi,, be the 

Hamiltonian vector$eld on LvY obtained from f;. Then $~B.A),X~~, = %f,; where the 

momentum observable fU is obtained from v and %f,, is the corresponding Hamiltonian 
vectorjeld on the stratum of Z de$ned by (B, h). 

We now seek to explain in terms of phenomena on LvY the problem with the attempted 
algebraic structure on the space of momentum observables on Z. To this end we introduce a 
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version of the multisymplectic geometry of Z on Lv Y. Define a representation of Td (Lv Y) 
into the space of (@,)“lFVfk-valued (n - I)-forms by 

f H f^ A (A+*@. (19) 

The form d(r\“i*@) is both closed and nondegenerate, so it may serve as a new type of 
generalized symplectic (n + 1)-form on LvY. In particular, for each (@JR”+k-valued 
(n - I)-form of the type fan (A”-Ii*@) where f^ E T$(LvY), we may assign a Hamiltonian 
vector field X~,,(,.,_,i,,) via the new structure equation containing d(r\“i*8), namely the 
equation 

d(f A (A”%*@) = -(l/r~)Xj,~,,-,~*~~ -Id(A”i*0). 

We may easily verify that XfA(An-,i*e) = Xj, so that in fact no new “vector field’ in- 
formation is provided by this structure equation beyond what is contained in the original 
(n + k)-symplectic structure equation (Eq. (18)). The natural choice for a definition of 
bracket for the new “momentum observables” is 

{f^ A (A”-+*@, i A (d-l ‘* z 0)) := -x$(X8 -/(i* d0 A (A”?*@))) 

= x,j-’ dg A (A+*@. (20) 

However, one finds that the bracket does not close on the set of (n - I)-forms of the type 
f^ A (/\+I ‘* z 0) where f^ E T{(LvY). In fact one finds that 

{f^ A (A”-+*@, g A (A”-+*@) 

= {f, j) A (A”-+*@ + (n - 1) d(fl A i A (A”-2i*6)). (21) 

This equation should be compared to Eq. (17). Thus we have found the analogue of the 
problem of closing the Poisson-type bracket on momentum observables defined on Z. 

7. Conclusions 

Standard symplectic geometry on the cotangent bundle T*M to an n-dimensional man- 
ifold M can be derived from n-symplectic geometry on LM. This is exactly the sense in 
which n-symplectic geometry is a covering theory for the symplectic geometry on T*M. If 
T* M is the prototypical symplectic manifold for classical particle mechanics then the vec- 
tor bundle Z 21 J*Y of affine cojets of a fiber bundle Y is the prototypical multisymplectic 
manifold for classical field theories. Our current investigation has reinforced this point of 
view by constructing the bundle of affine cojets as a bundle associated to LV Y, the principal 
bundle of vertically adapted linear frames. We demonstrated that the bundle LV Y possesses 
a generalized symplectic geometry pulled back from the geometry of the full frame bun- 
dle LY, and that the (n + k)-symplectic geometry on LV Y “covers” the multisymplectic 
geometry on Z. 

Following the GIMMsy [5] monograph, one may define momentum observables on Z 
from projectable vector fields on Y and then assign Hamiltonian vector fields using the 
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multivariable symplectic structure equation. The problem with the GIMMsy construction is 
that the naturally defined “Poisson” bracket of two such momentum observables, as defined 
by GIMMsy, is another momentum observable only up to the addition of an exact form. 
Thus the set of momentum observables does not form a Lie algebra under this “Poisson” 
bracket. We duplicated this result by introducing a version of the multisymplectic geometry 
of Z on Lv Y. Indeed, the representation defined in (19) is faithful and the failure of the 
“Poisson” bracket to close on the set of momentum observables is mirrored by Eq. (2 1). 

The principal bundle geometry on LvY not only reconstructs the above problem, but 
also suggests a remedy. In (n + k)-symplectic geometry one assigns to each projectable 
vector field on Y an R”+‘-valued tensorial function on Lv Y and an associated Hamiltonian 
vector field defined by the (n + k)-symplectic structure equation. We know that the set of all 
such tensorial functions forms a Lie algebra under the Poisson bracket defined in Eq. (4). 
Thus if it is only the Hamiltonian vector field that is important, then we have three ways 
to find essentially the same vector field, and any one seems to be as good as either of the 
other two. The three methods are: (1) multisymplectic geometry on Z; (2) the version of 
multisymplectic geometry of Z defined on LvY; and (3) (n + k)-symplectic geometry on 
Lv Y. However, to obtain an algebra of observables there is only one clear theory which 
leads to a consistent, well-defined Lie algebra, namely the (n + k)-symplectic theory. 

This investigation is foundational in the sense that in order to study classical particles 
or fields, we must understand the origin and nature of the observables. Of course, this can 
be done without the covering theory on the principal bundle. However, for example, in 
covariant field theory we must witness events from a preferred reference frame. Here the 
principal bundle is useful because it describes the space of all reference frames, and sections 
of the principal bundle determine preferential frames of inertial observers. 

There are implications of these results in the application of the procedure to geometric 
quantization of field theories. If one wants a Lie algebra to use in a geometric quantization 
program, then only the (n + k)-symplectic method will work without extension of the class 
of observables. An elaboration of some of the above results is found in [2,9], and further 
developments as well as potential applications will be discussed in greater detail in future 
publications. 
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